f07 — Linear Equations (LAPACK) f07phc

NAG C Library Function Document
nag_dsprfs (f07phc)

1 Purpose

nag_dsprfs (f07phc) returns error bounds for the solution of a real symmetric indefinite system of linear
equations with multiple right-hand sides, AX = B using packed storage. It improves the solution by
iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

void nag_dsprfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs,
const double ap[], const double afp[], const Integer ipiv[], const double b[],
Integer pdb, double x[], Integer pdx, double ferr[], double berr[],
NagError xfail)

3 Description

nag_dsprfs (f07phc) returns the backward errors and estimated bounds on the forward errors for the
solution of a real symmetric indefinite system of linear equations with multiple right-hand sides AX = B,
using packed storage. The function handles each right-hand side vector (stored as a column of the matrix
B) independently, so we describe the function of nag_dsprfs (f07phc) in terms of a single right-hand side b
and solution z.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that = is the exact solution of a
perturbed system

(A+6A)x =b+ 6b
|5aij| < 5|%’| and [0b;| < B]by].
Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — &;|/ max ||
KA 1
where z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] 7phe.1

f07phc NAG C Library Manual

2: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A is to be
factorized, as follows:

if uplo = Nag_Upper, the upper triangular part of A is stored and A is factorized as
PUDUT P”, where U is upper triangular;

if uplo = Nag_Lower, the lower triangular part of A is stored and A is factorized as
PLDLTPT, where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: ap[dim] — const double Input
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).

On entry: the n by n original symmetric matrix A as supplied to nag_dsptrf (f07pdc).

6: afp[dim] — const double Input
Note: the dimension, dim, of the array afp must be at least max(l,n x (n+1)/2).
On entry: details of the factorization of A stored in packed form, as returned by nag dsptrf
(f07pdc).

7: ipiv[dim| — const Integer Input
Note: the dimension, dim, of the array ipiv must be at least max(1,n).
On entry: details of the interchanges and the block structure of D, as returned by nag dsptrf
(f07pdc).

8: b[dim| — const double Input

Note: the dimension, dim, of the array b must be at least max(l,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

9: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).

10: x[dim] — double Input/Output

Note: the dimension, dim, of the array x must be at least max(1,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

f07phe.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07phc

If order = Nag_ColMajor, the (¢, j)th element of the matrix X is stored in x[(j — 1) X pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 5 — 1].

On entry: the n by r solution matrix X, as returned by nag_dsptrs (f07pec).

On exit: the improved solution matrix X.

pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).

12: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).
On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,... 7

13: berr[dim| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).
On exit: berr[j — 1] contains the component-wise backward error bound [for the jth solution
vector, that is, the jth column of X, for j =1,2,....n.

14: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
On entry, n = (value).
Constraint: n > 0.
On entry, nrhs = (value).
Constraint: nrhs > 0.
On entry, pdb = (value).
Constraint: pdb > 0.
On entry, pdx = (value).
Constraint: pdx > 0.

NE_INT 2

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

[NP3645/7] f07phe.3

f07phc NAG C Library Manual

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n* floating-point

operations. Each step of iterative refinement involves an additional 6n® operations. At most 5 steps of
iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b;

the number is usually 4 or 5 and never more than 11. Each solution involves approximately 2n?
operations.

The complex analogues of this function are nag_zhprfs (f07pvc) for Hermitian matrices and nag_zsprfs
(f07qvc) for symmetric matrices.

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

207 387 420 —1.15 —9.50 27.85
387 —021 187 0.63 —838 9.90
A= 420 187 115 206 | @™ B=| _¢07 1925
~115 0.63 2.06 —181 096 3.93

Here A is symmetric indefinite, stored in packed form, and must first be factorized by nag_dsptrf (f07pdc).

9.1 Program Text

/* nag_dsprfs (f07phc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, n, nrhs, ap_len, afp_len, pdb, pdx, ferr_len, berr_ len;
Integer exit_status=0;
NagError fail;

f07phc.4 [NP3645/7]

07 - L

inear Equations (LAPACK)

Nag_UploType uplo_enum;
Nag_OrderType order;

/* Arrays */

Integer *ipiv=0;

char
doub

#ifdef

#define A_LOWER(I,J) apl[(2*n-J)*(J-1)/2 + I - 1]

uplo[2];

le *afp=0, #*ap=0, #*b=0, #*berr=0, *ferr=0,

NAG_COLUMN_MAJOR

#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

orde
#else

r = Nag_ColMajor;

#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

#define A UPPER(I,J) apl[(2*n-I)=*(I-1)/2 + J - 1]

#define B(I,J) b[(I-1)#*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + JT - 1]

orde
#endif

r = Nag_RowMajor;

INIT FAIL(fail);

Vprintf ("f07phc Example Program Results\n\n");

/%S

kip heading in data file =*/

Vscanf ("$*[*\n] ");
Vscanf ("%$1d%1d%*["\n] ", &n, &nrhs);

ap_1

en =n * (n+ 1)/2;

afp_len = n * (n + 1)/2;

#ifdef

pdb =

pdx
#else
pdb

pdx =

#endif

ferr
berr

/% A
if (

{

}
/% R

Vsca
if (
up
else
up
else

{

Vprintf ("Unrecognised character for Nag_UploType type\n");

}

NAG_COLUMN_MAJOR

Il
jnl

= nrhs;

|
o]
[
oy
0

|
o}
=
oy
0]

_len =
_len = nrhs;

llocate memory */

! (ipiv = NAG_ALLOC(n, Integer)) |
afp = NAG_ALLOC(ap_1len, double))
ap = NAG_ALLOC(afp_len, double))
= NAG_ALLOC(n * nrhs, double))
rr = NAG_ALLOC(berr_len, doubl
ry 1
=)

—_— — —

1(
!(
1(
¢
1 (= NAG_ALLOC(ferr_1len, doub
1 (NAG_ALLOC(n * nrhs, double)
Vprintf ("Allocation failure\n");
exit_status = -1;

goto END;

ead A and B from data file, and copy A to AFP and B to X */

nf(" ' %1s 'sx[*\n] ", uplo);
* (unsigned char *)uplo == 'L’)
lo_enum = Nag_Lower;

if (*(unsigned char *)uplo == 'U’)
lo_enum = Nag_Upper;

exit_status = -1;
goto END;

if (uplo_enum == Nag_Upper)

{

for (1 = 1; 1 <= n; ++1)
{
for (j = i; j <= n; ++3j)

[NP3645/7]

f07phc

f07phc.5

f07phc NAG C Library Manual

Vscanf ("$1f", &A_UPPER(i,j));

b
Vscanf ("s*[*\n] ");
}
else
{
for (i = 1; i <= n; ++i)
{
for (3 = 1; j <= i; ++3)
Vscanf ("$1f", &A_LOWER(i,3));
¥
Vscanf ("sx[*\n] ");
}
for (i = 1; i <= n; ++1i)
{

for (j = 1; j <= nrhs; ++3)
Vscanf ("$1f", &B(i,3));

}
Vscanf ("$*[*\n] ");
for (i =1; i <=n * (n+ 1) / 2; ++1i)
afpli - 1] = apli - 1];
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= nrhs; ++3j)
X(llj) = B(i/j)i
}

/* Factorize A in the array AFP *x/
fO07pdc(order, uplo_enum, n, afp, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07pdc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute solution in the array X */
fO7pec(order, uplo_enum, n, nrhs, afp, ipiv, x, pdx, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from fO7pec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Improve solution, and compute backward errors and #*/

/* estimated bounds on the forward errors #*/

fO07phc(order, uplo_enum, n, nrhs, ap, afp, ipiv, b, pdb,
x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7phc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print solution x/
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
"Solution(s)", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++3j)
Vprintf ("$11l.1le%s", berr([j-1]1, j%7==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
Vprintf ("$1l.1le%s", ferr[j-11, j%7==0 2"\n":" ");
Vprintf ("\n") ;
END:
if (ipiv) NAG_FREE (ipiv) ;

f07phe.6 [NP3645/7]

f07 — Linear Equations (LAPACK)

if (afp) NAG_FREE (afp);
if (ap) NAG_FREE (ap);

if (b) NAG_FREE (b) ;

if (berr) NAG_FREE (berr);
if (ferr) NAG_FREE (ferr);

if (x) NAG_FREE(x);
return exit_status;

9.2 Program Data

fO07phc Example Program Data

4 2

ILI

2.07

3.87 -0.21

4.20 1.87 1.15
-1.15 0.63 2.06
-9.50 27.85
-8.38 9.90
-6.07 19.25
-0.96 3.93

9.3 Program Results

fO07phc Example Program Results

Solution(s)

1 2
1 -4.0000 1.0000
2 -1.0000 4.0000
3 2.0000 3.0000
4 5.0000 2.0000

:Values of N and NRHS
:Value of UPLO

:End of matrix A

:End of matrix B

Backward errors (machine-dependent)
4.1le-17 5.5e-17

Estimated forward error bounds

2.3e-14 3.3e-14

(machine-dependent)

f07phc

[NP3645/7]

f07phe.7 (last)

	f07phc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	nrhs
	ap
	afp
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

